
1. Introduction to Functions

A function in C++ is a self-contained block of code that performs a specific task. Functions help in breaking a
large program into smaller, manageable parts. Each function is designed to perform one particular operation,
making the program easier to understand, debug, and maintain.

Functions promote modularity, code reuse, and clarity. Instead of writing the same code repeatedly, a function
can be written once and called multiple times from different parts of the program.

2. Need for Functions in Programming

Functions are necessary in programming due to the following reasons:

 Reduce code duplication
 Improve readability
 Simplify debugging and testing
 Enhance program structure
 Support teamwork in large projects

Without functions, programs become lengthy, confusing, and difficult to maintain.

3. Types of Functions in C++

C++ supports two main types of functions:

1. Built-in Functions
These are predefined functions provided by C++ libraries, such as:

o cout, cin
o sqrt(), pow()
o strlen()

2. User-defined Functions
These functions are created by programmers to perform specific tasks according to program
requirements.

4. Components of a Function

A function in C++ consists of three main parts:

1. Function Declaration (Prototype)
2. Function Definition
3. Function Call

Each component plays an important role in function execution.

5. Function Declaration (Prototype)

A function declaration tells the compiler about the function name, return type, and parameters.

Syntax
return_type function_name(parameter_list);

Example
int add(int, int);

Function declarations are usually written before the main() function.

6. Function Definition

The function definition contains the actual code that executes when the function is called.

Syntax
return_type function_name(parameters)
{
 statements;
 return value;
}

Example
int add(int a, int b)
{
 return a + b;
}

7. Function Call

A function call is used to execute the function.

Example
int sum = add(5, 3);

When a function is called:

 Control transfers to the function
 Statements inside the function execute
 Control returns to the calling function

8. Types of User-Defined Functions

User-defined functions are classified into four types:

1. No arguments, no return value
2. Arguments, no return value
3. No arguments, return value
4. Arguments and return value

Example
void display(); // no argument, no return
int square(int x); // argument and return value

9. Function Arguments and Parameters

 Parameters are variables defined in the function declaration
 Arguments are values passed during function call

Example
void show(int x) // parameter
{
 cout << x;
}

show(10); // argument

10. Call by Value

In call by value, a copy of the argument is passed to the function.

Example
void change(int x)
{
 x = 20;
}

Changes made inside the function do not affect the original variable.

11. Call by Reference

In call by reference, the address of the variable is passed.

Example
void change(int &x)
{
 x = 20;
}

Changes made inside the function affect the original variable.

12. Default Arguments

Default arguments allow a function to use predefined values if arguments are not provided.

Example
int add(int a, int b = 5)
{
 return a + b;
}

13. Inline Functions

Inline functions reduce function call overhead by replacing the function call with function code.

Example
inline int square(int x)
{
 return x * x;
}

14. Recursive Functions

A recursive function is a function that calls itself.

Example
int fact(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fact(n - 1);
}

Recursion must have a base condition to stop execution.

15. Advantages of Functions

 Code reuse
 Better organization
 Easy debugging
 Reduced complexity
 Improved readability

16. Limitations of Functions

 Function calls add overhead
 Poor design can increase complexity
 Excessive parameters reduce clarity

17. Applications of Functions

Functions are used in:

 Mathematical calculations
 File handling
 Game development
 Banking systems
 Scientific programs

18. Best Practices for Using Functions

 Use meaningful function names
 Keep functions small
 Avoid global variables
 Use comments
 Follow proper indentation

19. Difference Between main() and User-Defined Functions

main() User-defined Function

Program execution starts here Called from main

Only one main function Multiple allowed

Mandatory Optional

20. Conclusion

Functions are a core concept in C++. They help divide complex problems into simpler parts and promote
reusable, readable, and efficient code. Understanding functions is essential for writing structured and
professional C++ programs.

